资源类型

期刊论文 89

会议视频 2

年份

2023 12

2022 13

2021 6

2020 8

2019 2

2018 4

2017 6

2016 3

2015 6

2014 9

2013 3

2012 2

2011 1

2010 3

2009 1

2008 2

2007 3

2006 2

2005 2

2000 1

展开 ︾

关键词

反渗透 7

海水淡化 4

纳滤 3

反渗透膜 2

耐氯性 2

聚酰胺 2

脱盐 2

膜分离 2

膜材料 2

人工滤池 1

人类免疫缺陷病毒(HIV) 1

传递阻力 1

偏远岛礁 1

光伏发电 1

光热纱线 1

分离性能 1

制氢 1

医学 1

即时检测 1

展开 ︾

检索范围:

排序: 展示方式:

Economic evaluation of reverse osmosis desalination system coupled with tidal energy

Changming LING, Yifei WANG, Chunhua MIN, Yuwen ZHANG

《能源前沿(英文)》 2018年 第12卷 第2期   页码 297-304 doi: 10.1007/s11708-017-0478-2

摘要: A reverse osmosis (RO) desalination system coupled with tidal energy is proposed. The mechanical energy produced by the tidal energy through hydraulic turbine is directly used to drive the RO unit. The system performances and the water cost of the conventional and tidal energy RO systems are compared. It is found that the proposed tidal energy RO system can save water cost in the range of 31.0% 41.7% in comparison with the conventional RO system. There is an optimum feed pressure that leads to the lowest water cost. The tidal RO system can save more costs at a high feed pressure or a high water recovery rate. The optimum feed pressure of the tidal energy RO system is higher than that of the conventional RO system. The longer lifetime of the tidal energy RO system can save even more water cost. When the site development cost rate is lower than 40%, the water cost of the tidal energy RO system will be lower than that of the conventional RO system. The proposed technology will be an effective alternative desalination method in the future.

关键词: reverse osmosis (RO) desalination     tidal energy     model     economic evaluation    

Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties fordesalination

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1497-0

摘要:

• Nanoparticle incorporation and anti-biofouling grafting were integrated.

关键词: Anti-biofouling grafting     Nanoparticle incorporation     Sterilization rates     Water flux     Water flux recovery    

Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalinationproperties of thin-film nanocomposite reverse osmosis membranes

Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1185-5

摘要: Mesoporous silica nanoparticle was modified with 4-triethoxysilylaniline. AMSN-based TFN-RO membranes were prepared for seawater desalination. Water transport capability of the AMSN was limited by polyamide. Polyamide still plays a key role in permeability of the TFN RO membranes. Mesoporous silica nanoparticles (MSN), with higher water permeability than NaA zeolite, were used to fabricate thin-film nanocomposite (TFN) reverse osmosis (RO) membranes. However, only aminoalkyl-modified MSN and low-pressure (less than 2.1 MPa) RO membrane were investigated. In this study, aminophenyl-modified MSN (AMSN) were synthesized and used to fabricate high-pressure (5.52 MPa) RO membranes. With the increasing of AMSN dosage, the crosslinking degree of the aromatic polyamide decreased, while the hydrophilicity of the membranes increased. The membrane morphology was maintained to show a ridge-and-valley structure, with only a slight increase in membrane surface roughness. At the optimum conditions (AMSN dosage of 0.25 g/L), when compared with the pure polyamide RO membrane, the water flux of the TFN RO membrane (55.67 L/m2/h) was increased by about 21.6%, while NaCl rejection (98.97%) was slightly decreased by only 0.29%. However, the water flux of the membranes was much lower than expected. We considered that the enhancement of RO membrane permeability is attributed to the reduction of the effective thickness of the PA layer.

关键词: Thin film nanocomposite membrane     Reverse osmosis     Seawater desalination     Aminophenyl-functionalized mesoporous silica nanoparticles    

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1606-1615 doi: 10.1007/s11705-022-2200-0

摘要: The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes, resulting in a large number of wasted reverse osmosis membranes. In this work, the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO2 and 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS), respectively. Various techniques were applied to characterize the obtained membranes, which were then used to separate the oil–water system. The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2° ± 0.3°, and its oil–water separation performance was as high as 97.8%. After 20 recycle tests, the oil–water separation performance remained more than 96%, which was attributed to the film adhesion of the anchored TiO2 and PFOTS layer on the surface. This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.

关键词: oil–water separation     wasted reverse osmosis membrane     hydrophobic modification    

Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1183-1195 doi: 10.1007/s11705-022-2287-3

摘要: Improving the performance of reverse osmosis membranes remains great challenge to ensure excellent NaCl rejection while maintaining high water permeability and chlorine resistance. Herein, temperature-responsive intelligent nanocontainers are designed and constructed to improve water permeability and chlorine resistance of polyamide membranes. The nanocontainer is synthesized by layer-by-layer self-assembly with silver nanoparticles as the core, sodium alginate and chitosan as the repair materials, and polyvinyl alcohol as the shell. When the polyamide layer is damaged by chlorine attack, the polyvinyl alcohol shell layer dissolves under temperature stimulation of 37 °C, releasing inner sodium alginate and chitosan to repair broken amide bonds. The polyvinyl alcohol shell responds to temperature in line with actual operating environment, which can effectively synchronize the chlorination of membranes with temperature response and release inner materials to achieve self-healing properties. With adding temperature-responsive intelligent nanocontainers, the NaCl rejection of thin film composite membrane decreased by 15.64%, while that of thin film nanocomposite membrane decreased by only 8.35% after 9 chlorination cycles. Effective repair treatment and outstanding chlorine resistance as well as satisfactory stability suggest that temperature-responsive intelligent nanocontainer has great potential as membrane-doping material for the targeted repair of polyamide reverse osmosis membranes.

关键词: reverse osmosis     nanocontainer     self-healing     chlorine resistance     water permeability    

海水淡化反渗透耐氯膜材料的研究与制备进展

黄海,张林,侯立安

《中国工程科学》 2014年 第16卷 第7期   页码 89-94

摘要:

反渗透是重要的海水淡化技术,本文针对反渗透膜易被水中活性氯破坏导致性能下降的问题,介绍了聚酰胺反渗透膜氯化降解理论,并深入探讨了国内外对耐氯反渗透膜材料的研究与开发现状,讨论了耐氯反渗透膜的研究方向和发展前景。

关键词: 海水淡化     水处理     反渗透     聚酰胺     耐氯性     膜材料    

Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1428-0

摘要:

• The boron concentration in diluted DS can satisfy the irrigation water standard.

关键词: Fertilizer drawn forward osmosis (FDFO)     Boron removal     Specific energy consumption (SEC)     Seawater reverse osmosis (SWRO)     Irrigation water production    

Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverseosmosis membranes

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 564-591 doi: 10.1007/s11705-021-2109-z

摘要: Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.

关键词: reverse osmosis     polyamide     thin film composite membranes     chlorine resistance     surface modification    

Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems

Xiaomao WANG,Hongwei YANG,Zhenyu LI,Shaoxia YANG,Yuefeng XIE

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 155-163 doi: 10.1007/s11783-014-0740-3

摘要: High-pressure membrane process is one of the cost-effective technologies for the treatment of groundwater containing excessive dissolved solids. This paper reports a pilot study in treating a typical groundwater in Huaibei Plain containing excessive sodium, sulfate and fluoride ions. Three membrane systems were set up and two brands of reverse osmosis (RO), four low-pressure RO (LPRO) and one tight nanofiltration (NF) membranes were tested under this pilot study. An apparent recovery rate at about 75% was adopted. Cartridge filtration, in combination with dosing antiscalent, was not sufficient to reduce the fouling potential of the raw water. All RO and LPRO systems (except for the two severely affected by membrane fouling) demonstrated similar rejection ratios of the conductivity (~98.5%), sodium (~98.5%) and fluoride (~99%). Membrane fouling substantially reduced the rejection performance of the fouled membranes. The tight NF membrane also had a good rejection on conductivity (95%), sodium (94%) and fluoride (95%). All membranes rejected sulfate ion almost completely (more than 99%). The electricity consumptions for the RO, LPRO and NF systems were 1.74, 1.10 and 0.72 kWh?m treated water, respectively. The estimated treatment costs by using typical RO, LPRO and tight NF membrane systems were 1.21, 0.98 and 0.96 CNY?m finished water, respectively. A treatment process consisting of either LPRO or tight NF facilities following multi-media filtration was suggested.

关键词: reverse osmosis (RO)     nanofiltration (NF)     water quality standards     sodium     fluoride     cost estimation    

Performance of landfill leachate treatment system with disc-tube reverse osmosis units

WANG Baozhen, LIU Shuo, LIU Yanping, LI Xiujin

《环境科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 24-31 doi: 10.1007/s11783-008-0024-x

摘要: Reverse osmosis system with the disc-tube module (DT-RO) was applied to treat landfill leachate on full scale at the Changshengqiao Sanitary Landfill, Chongqing City, China. In the first six-mouth operation phase, the treatment performance of DT-RO system had been excellent and stable. The removal rate of chemical oxygen demand (COD), total organic carbon (TOC), electrical conductivity (EC), and ammonia nitrogen (NH-N) reached 99.2–99.7%, 99.2%, 99.6%, and over 98%, respectively. The rejection of Ca, Ba, and Mg was over 99.9%, respectively. Suspended solid (SS) was not detected in product water. Effective methods had been adopted to control membrane fouling, of which chemical cleaning is of utmost importance to guarantee the long smooth operation of the DT-RO system. The DT-RO system is cleaned in turns with Cleaner A and Cleaner C. At present, the 1st stage cleaning cycle by Cleaner A and Cleaner C is conducted every 100 and 500 h, respectively, depending on raw the water quality.

关键词: chemical cleaning     product     organic     nitrogen     Effective    

Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated

Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1047-6

摘要:

MABR exhibits excellent TN removal performance for treating ROC with low C/N ratio.

Operating conditions should be properly controlled to achieve optimal TN removal.

Denitrifying bacteria and NOB are proved notably inhibited by high salinity stress.

The TN removal rate remains over 70% when the NaCl addition amount is below 20 g/L.

关键词: Membrane-aerated biofilm reactor (MABR)     Salinity     Total nitrogen     Reverse osmosis concentrate    

反渗透和纳滤膜的研制与应用

张奇峰,李胜海,王屯钰,李磊,张所波

《中国工程科学》 2014年 第16卷 第12期   页码 17-23

摘要:

本文介绍了基于联苯多元酰氯单体的聚酰胺反渗透和纳滤复合膜材料体系。通过系统研究聚合物的官能团含量、取代基位置等因素对反渗透复合膜性能的影响,揭示了有价值的实验规律: a.通过调节酰氯单体的官能度,可以实现对反渗透复合膜的性质,包括表面形貌、表面化学组成、表面荷电性质的调控,从而实现对复合膜分离性能及抗污染性能的调控;b.可以利用联苯多元酰氯单体制备得到纳滤复合膜,所得纳滤膜的孔径和荷电性质可以通过调节制膜工艺实现调控。这些结果,为进一步优化制膜工艺,提供可供产业化生产的新型反渗透和纳滤复合膜制备技术奠定了基础。

关键词: 反渗透膜     纳滤膜     联苯多元酰氯    

Forward osmosis coupled with lime-soda ash softening for volume minimization of reverse osmosis

Jiandong Lu, Shijie You, Xiuheng Wang

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1301-6

摘要: Abstract • Forward osmosis (FO) coupled with chemical softening for CCI ROC minimization • Effective removal of scale precursor ions by lime-soda ash softening • Enhanced water recovery from 54% to 86% by mitigation of FO membrane scaling • High-purity CaCO3 was recovered from the softening sludge • Membrane cleaning efficiency of 88.5% was obtained by EDTA for softened ROC Reverse osmosis (RO) is frequently used for water reclamation from treated wastewater or desalination plants. The RO concentrate (ROC) produced from the coal chemical industry (CCI) generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions, such as Na+, Ca2+, Mg2+, Cl−, and SO42−. To address this issue, in this study, we focused on coupling forward osmosis (FO) with chemical softening (FO-CS) for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO3. In the case of the real raw CCI ROC, softening treatment by lime-soda ash was shown to effectively remove Ca2+/Ba2+ (>98.5%) and Mg2+/Sr2+/Si (>80%), as well as significantly mitigate membrane scaling during FO. The softened ROC and raw ROC corresponded to a maximum water recovery of 86% and 54%, respectively. During cyclic FO tests (4 × 10 h), a 27% decline in the water flux was observed for raw ROC, whereas only 4% was observed for softened ROC. The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC (88.5%) than that for raw ROC (49.0%). In addition, CaCO3 (92.2% purity) was recovered from the softening sludge with an average yield of 5.6 kg/m3 treated ROC. This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery, which makes the treatment of CCI ROC more efficient and more economical.

关键词: Coal chemical industry     Forward osmosis     Chemical softening     Reverse osmosis concentrate    

Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by

Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1139-y

摘要:

Humic acids (HA) didn’t cause obvious reverse osmosis (RO) membrane fouling in 45 h.

Osmotic pressure (NaCl) affected slightly the RO membrane fouling behavior of HA.

Ca2+ promoted aggregation of HA molecules and thus aggravated RO membrane fouling.

Ozonation eliminated the effect of Ca2+ on the RO membrane fouling behavior of HA.

The change of the structure of HA was related to its membrane fouling behavior.

关键词: Reverse osmosis     Membrane fouling     Humic acid     Ca2+     Ozone    

聚酰胺反渗透膜中水传递阻力的分子模拟——界面阻力和内部阻力 Article

宋阳, 魏明杰, 徐放, 汪勇

《工程(英文)》 2020年 第6卷 第5期   页码 577-584 doi: 10.1016/j.eng.2020.03.008

摘要:

在分子水平上理解水分子在聚酰胺(PA)反渗透(RO)膜中的传递阻力对于这些膜的设计、制备和应用具有非常重要的指导意义。然而,现实世界中,对于具有200 nm PA层的RO膜,界面阻力起次要作用,其贡献率低于10%。这表明,当使用典型方法估算RO膜的传递阻力时,存在不准确的风险,因为该方法简单地将5 nm厚的PA层的总阻力进行倍增,使得界面阻力被错误放大。此外,界面阻力和内部阻力均取决于PA层的化学性质。

关键词: 传递阻力     反渗透     非平衡分子动力学     水分子亲水性     建模    

标题 作者 时间 类型 操作

Economic evaluation of reverse osmosis desalination system coupled with tidal energy

Changming LING, Yifei WANG, Chunhua MIN, Yuwen ZHANG

期刊论文

Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties fordesalination

期刊论文

Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalinationproperties of thin-film nanocomposite reverse osmosis membranes

Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang

期刊论文

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

期刊论文

Self-healing polyamide reverse osmosis membranes with temperature-responsive intelligent nanocontainers

期刊论文

海水淡化反渗透耐氯膜材料的研究与制备进展

黄海,张林,侯立安

期刊论文

Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of

期刊论文

Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverseosmosis membranes

期刊论文

Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems

Xiaomao WANG,Hongwei YANG,Zhenyu LI,Shaoxia YANG,Yuefeng XIE

期刊论文

Performance of landfill leachate treatment system with disc-tube reverse osmosis units

WANG Baozhen, LIU Shuo, LIU Yanping, LI Xiujin

期刊论文

Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated

Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li

期刊论文

反渗透和纳滤膜的研制与应用

张奇峰,李胜海,王屯钰,李磊,张所波

期刊论文

Forward osmosis coupled with lime-soda ash softening for volume minimization of reverse osmosis

Jiandong Lu, Shijie You, Xiuheng Wang

期刊论文

Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by

Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu

期刊论文

聚酰胺反渗透膜中水传递阻力的分子模拟——界面阻力和内部阻力

宋阳, 魏明杰, 徐放, 汪勇

期刊论文